If it's not what You are looking for type in the equation solver your own equation and let us solve it.
k^2-2k-80=0
a = 1; b = -2; c = -80;
Δ = b2-4ac
Δ = -22-4·1·(-80)
Δ = 324
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{324}=18$$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-2)-18}{2*1}=\frac{-16}{2} =-8 $$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-2)+18}{2*1}=\frac{20}{2} =10 $
| 1/2n-8=12 | | 12x-3=8x+12 | | a/6a=78* | | (10x+4)=(-7+x) | | 0.15x=x-30 | | 3(x+4)+11=47 | | 8u–8u+u=4 | | -12x-34=62-9x | | (x+36)=49. | | 3x+10.8=2x+2.8 | | 37+3x=-3+5(x+6) | | -x-258=78-13x | | 3f-5=34 | | 25m=184m= | | 10x-24=6+8x | | 4y-(-)3y=844y-(-)3y=84 | | k+13=513k= | | -13x-13=-15x+23 | | 0.67(1x+2x+4x)=1 | | 8w+11w-8w-10w=50 | | 40n-38n-n+8n-2n=42 | | 4x=8x4 | | 210=14gg= | | E^5-2p+2=4 | | 2b+50=100 | | -120=-6(4x+8) | | 2x(62-7)+62(-67)=72 | | 49x-44x+7x=48 | | 89-42=90-x | | -48=-4(4+x) | | (1.25x*0.08)-3=x | | 44g-2g-32g-8g-g=26 |